
Week 7 - Monday



 What did we talk about last time?
 Traversals
 BST delete





Infix to Postfix Converter





 Maybe we still have a binary tree, but we don’t have any 
guarantees about ordering

 How would you search for something?
 We could use preorder or postorder traversals
 These are types of depth first searches
 You go to the bottom of the tree before you come back

 What if we thought what we are looking for might be close to 
the top?



 The most logical breadth first traversal visits each level of a tree in order:

 10 6 14 1 9 . 17 . 2 7 . 15 . . . . . . .
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6 14

1 9 17

72 15



From: http://xkcd.com/761/



 For depth first traversals, we used a stack
 What are we going to use for a BFS?
 A queue!

 Algorithm:
1. Put the root of the tree in the queue
2. As long as the queue is not empty:

a) Dequeue the first element and process it
b) Enqueue all of its children



 Write a level order (breadth first) traversal
 Hint: Use an explicit queue
 Non-recursive!

public void levelOrder()



Balance in all things



 A 2-3 search tree is a data structure that maintains balance
 It is actually a ternary tree, not a binary tree
 A 2-3 tree is one of the following three things:
 An empty tree (null)
 A 2-node (like a BST node) with a single key, smaller data on its left 

and larger values on its right
 A 3-node with two keys and three links, all key values smaller than 

the first key on the left, between the two keys in the middle, and 
larger than the second key on the  right



 The key thing that keeps a 2-3 search tree balanced is that all 
leaves are on the same level

 Only leaves have null links
 Thus, the maximum depth is somewhere between the log3n

(the  best case, where all nodes are 3-nodes) and log2n (the 
worst case, where all nodes are 2-nodes)



 We build from the bottom up
 Except for an empty tree, we never put a new node in a null 

link
 Instead, you can add a new key to a 2-node, turning it into a 3-

node
 Adding a new key to a 3-node forces it to break into two 2-

nodes



 Starting with an empty tree, we put in a new 
2-node:

X

Add 19

19



 When adding to a 2-node, make it a 3-node, 
we put in a new 2-node:

Add 35

1919 35



 When adding to a 3-node, the 3-node breaks 
into two 2-nodes, bringing the middle value up:

Add 4

19

35

19 35

4



 When breaking a 3-node into two parts, you move the middle 
value up

 If the node above is empty, it's a new 2-node
 If the node above is a 2-node, it becomes a 3-node
 If the node above is another 3-node, it also breaks into 2-

nodes, which might cascade up the tree



 Add the following keys to a 2-3 tree:
 62
 11
 32
 7
 45
 24
 88
 25
 28
 90



 Because of the guarantees about the depth of the tree, we the 
following running times for 2-3 search trees
 Θ(log n) insert
 Θ(log n) delete (messy, but true)
 Θ(log n) find (not that different from a BST find)



 How do we implement a 2-3 tree?
 Answer: We don't.
 It is (of course) possible, but it involves having weird 2-nodes 

and 3-nodes that inherit from some abstract node class or 
interface

 It's a huge pain
 Note that 2-3 trees are essentially a special case of a B-tree, and 

someone does have to implement those
 Instead, we use red-black trees which are structurally the 

same as 2-3 trees (if you squint)





 One hundred ants are walking along a meter long stick
 Each ant is traveling either to the left or the right with a 

constant speed of 1 meter per minute
 When two ants meet, they bounce off each other and reverse 

direction
 When an ant reaches an end of the stick, it falls off
 Will all the ants fall off?
 What is the longest amount of time that you would need to 

wait to guarantee that all ants have fallen off?



 On the previous slide, we can look at the problem "as if" ants 
were passing through each other with no effect

 This idea of looking at a problem as if it is something else can 
make solving it easier

 Coding up a 2-3 tree is annoying (but possible)
 By creating a data structure that is (somehow) equivalent, we 

can get the job done in an easier way
 Sometimes the way we implement an algorithm and the way 

we analyze it are different



 A red-black tree is a form of binary search tree
 Each node looks like a regular BST node, with one additional 

piece of information: color
 A node can either be red or black
 Null values are considered black

 The color allows us to simulate a 2-3 tree
 We can think of a red node is actually part of a 3 node with its parent



 A red-black tree is a BST with red and black nodes and the 
following properties:
 Red nodes lean left from their parents
 No node has two red children
 The tree has perfect black balance
▪ In other words, every path from the root to a null has the same number of black 

nodes on the way
▪ The length of this path is called the black height of the tree

 The book describes the link as having a color (which is probably 
easier to think about), but the color has to be stored in the node
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 We can do an insertion with a red-black tree using a series of rotations 
and recolors

 We do a regular BST insert
 Then, we work back up the tree as the recursion unwinds
 If the right child is red, we rotate the current node left
 If the left child is red and the left child of the left child is red, we rotate the 

current node right
 If both children are red, we recolor them black and the current node red

 You have to do all these checks, in order!
 Multiple rotations can happen

 It doesn't make sense to have a red root, so we always color the root black 
after the insert



We perform a left rotation 
when the right child is red
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We perform a right rotation when the 
left child is red and its left child is red
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We recolor both children and the current 
node when both children are red
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 Add the following keys to a red-black tree:
 62
 11
 32
 7
 45
 24
 88
 25
 28
 90

 Hint: Add to a 2-3 tree, then convert to red-black



 The height of a red-black tree is no more than 2 log n
 Find is Θ(height), so find is Θ(log n)
 Since we only have to go down that path and back up to 

insert, insert is Θ(log n)
 Delete in red-black trees is messy, but it is also actually Θ(log 

n)





 Finish red-black trees
 AVL trees
 Balancing trees by construction



 Keep working on Project 2
 Due Friday!

 Keep reading Section 3.3
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